Showing posts with label teaching. Show all posts
Showing posts with label teaching. Show all posts

Sunday, 6 November 2016

How to be an Unplugged Artist


A recently released book Teaching Computing Unplugged in Primary Schools  edited by Helen Caldwell (University of Northampton) and Neil Smith (Open University) has a number of interesting chapters by authors who are passionate about how computing is taught in schools. The central theme is unplugged activities, without using computers, but still teach the fundamental of computational thinking.

Ok, confession time. I co-wrote, along with Katharine Childs (Code Club), Chapter 3 Artists so I am biased here, but I believe in the central theme of Unplugged Computing. Computing, and Computational Thinking in general,  is not just about programming and using a computer (though using computers and  programming are vitally important to Computing) but it is also about many other things including problem-solving, being creative and working collaboratively.

Chapter 3 is about linking these computational thinking ideas to produce visual art, by applying computing principles including  repetition, following and refining algorithms, and abstraction. The chapter also looks, how these links have already being made, with examples such Sol Le Witt where not all the work that was produced by the artist himself, but some by others following his written instructions - in other words an algorithm. There is even a game Thomas's Tangles

The other chapters make links with areas such as Robots, Musicians, Explorers, Magicians, Gamers, Cooks and Scientists.

References

Barr, D., Harrion, J., and Conery, L. (2011) Computational Thinking: A Digital Age Skill for Everyone Leading and Learning with Technology, ISTE, March/April 2011 [accessed via http://www.csta.acm.org/Curriculum/sub/CurrFiles/LLCTArticle.pdf on 26/12/2015]
 
Barr, V. and Stephenson, C. (2011) Bringing Computational Thinking to K-12, ACM Inroads, Vol 2. No 1, pp 48 - 54 [accessed via http://csta.acm.org/Curriculum/sub/CurrFiles/BarrStephensonInroadsArticle.pdf on 26/12/2015]
https://doi.org/10.1145/1929887.1929905
 
Computing at School (2013) Computing in the National Curriculum: A guide for primary teachers [accessed via http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf on 13/3/2016]
 
Denning, Peter J. (2009) Beyond Computational Thinking, Communications of the ACM Vol 52, Issue 6, pp 28 - 30 [accessed via http://sgd.cs.colorado.edu/wiki/images/7/71/Denning.pdf on 26/12/2015]
 
DfE: Department for Education (2013) National Curriculum in England: computing programmes of study
 
Freedman, J. (2015) Cycloid Drawing Machine [online] URL: https://www.kickstarter.com/projects/1765367532/cycloid-drawing-machine accessed on 3/3/2016.
 
Google. 2016 Project Jacquard [online] URL: https://www.google.com/atap/project-jacquard/ accesed on:1/3/2016.
 
Knuth, D. 1968. Preface, The Art of Programming vol 1., Boston: Addison-Wesley.
 
Knuth, D. 1996. Foreword. In: Petkovsek, M., Wilf, H., Zeilberger, D. A=B.. Natick: A K Peters/CRC Press, vii.
 
Koetsier, T., 2001. On the prehistory of programmable machines: Musical automata, looms, calculators. Mechanism and Machine Theory, 36(5), 589-603.
https://doi.org/10.1016/S0094-114X(01)00005-2
 
Menegus, B (2016) CDMS: Built with Processing [online] URL: http://wheelof.com/sketch/ accessed on 4/3/2016
 
MoMA. 2012. MoMA| Video Games [online] URL: http://www.moma.org/explore/inside_out/2012/11/29/video-games-14-in-the-collection-for-starters/ accessed on: 1/3/2016.
 
Papert, S (1993) The children's machine: Rethinking schools in the age of the computer. New York: Basic books
 
Pearson M (2011) Generative Art: A practical guide using Processing, New York: Manning, 3-12
 
Selby, C. and Woollard, J. (2013) Computational thinking: the developing definition University of Southampton [accessed via http://eprints.soton.ac.uk/356481/7/Selby_Woollard_bg_soton_eprints.pdf on 26/12/2015]
 
The Art Story (2016) Sol LeWitt [online] http://www.theartstory.org/artist-lewitt-sol.htm accessed on: 6/3/2016
 
Wing, J. (2006) Computational Thinking Communications of the ACM Vol 49 pp 33 - 35 [accessed via https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf on 26/12/2015]
https://doi.org/10.1145/1118178.1118215
 
Wing, J. (2011) Computational Thinking - What and Why The Link - News from the School of Computer Science, Issue 6.0, Spring 2011 [accessed via http://www.cs.cmu.edu/sites/default/files/11-399_The_Link_Newsletter-3.pdf on 26/12/2015]
 
Liukas L (2015) Activity 7 The Robots Hello Ruby - Adventures in Coding, New York: Feiwel and Friends, 94-97.
 
Schofield, S (2016) Generative Artworks [online] URL: http://www.simonschofield.net
 
Turner S (2016) 3 'Art' Scratch Projects [online] URL: http://compuationalthinking.blogspot.co.uk/2016/03/3-of-my-scratch-projects-for-week.html accessed on: 12/3/2016.






All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with. Twitter: @scottturneruonAll views are those of the author and should not be seen as the views of any organisation the author is associated with.

Sunday, 28 February 2016

Teaching social AI with robots and chatbots

I  managed to do something I have want to do for a long time this week, thanks to the recent purchase of NAO robots by the University of Northampton, I have managed to include a physical example of Social Robots into my teaching. The aim of the session was to teach about social AI, revolving around the using social cues, to a certain extent, using natural language through chatbots, for us to communicate with machines.

The robots were used as an example of a social robot,  the way we want to play with or work with them, without having to going through a steep learning curve on how to use them. Students were encouraged to consider why this was and that anthropomorphisation plays a part (NAO basically has some of the characteristics of a small child). The fact that it responds to voice commands, its looks, has a childlike voice, that it always moving (even slightly when standing) and the way it moves; were spotted by the group as ways it attracts us to it - it is really hard not to talk to it like a child sometimes (but perhaps that is just me).




This session also included the use of chatbots (one example, ALICE used is shown here) and AIML, Artificial Intelligence Markup Language, (a link to more about AIML is included below). Just as a bit of background, chatbots (also called variously, chatterbots, conversational agents, etc) are programs that hold a conversation with us using through either text or speech. The chatbots were used to show how we can create intelligent-like behave by in effect providing responses to questions. Followed by, how we then take this further by using the responses people give, while using the chatbot, to 'fine-tune' the model.


To read more about NAO robots go to https://www.aldebaran.com/en
To read more on AIML go to http://www.alicebot.org/aiml.html

Example chatbots

If you would like to create your own chatbot personally I think one of the easiest ways to start is through https://playground.pandorabots.com/en/quickstart/


All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with

Answers not on the Screen

  2.  The answers not on the screen Hill, G. ,  Turner, S. J.  and  Childs, K.  (2017)  Abstract:  Reflection from two areas on the issues...